Aspen Movie Map

The Aspen Movie Map was a revolutionary hypermedia system developed at MIT by a team working with Andrew Lippman in 1978 with funding from ARPA .


The Aspen Movie Map enabled the user to take a virtual tour through the city of Aspen, Colorado (that is, a form of surrogate travel). It is an early example of a hypermedia system.

A gyroscopic stabilizer with a 16mm stop-frame film camera has been set up with the camera in mind. The distance is measured from an optical sensor attached to the hub of a wheeled bicycle behind the vehicle. The cameras were mounted in front of the front, back, and side views. Filming took place daily between 10 am and 2 pm to minimize lighting discrepancies. Aspen to enable registered match cuts .

The film was assembled into a collection of discontinuous scenes and then transferred to laserdisc , the analog-video precursor to modern digital optical disc storage technologies such as DVDs . A database was made that correlated the layout of the video on the disc with the two-dimensional street plan. Thus linked, the user was able to choose an arbitrary path through the city; the only restrictions being the need to stay in the center of the street; move ten feet between steps; and view the street from one of the four orthogonal views.

The interaction was controlled through a dynamic-generated menu overlaid on a video clipboard: speed and viewing angles were modified by the selection of the appropriate icon through a touch-screen interface, harbinger of the ubiquitous interactive-video kiosk. Commands were sent by the user to the user interface and overlay to the laserdisc players. Another interface feature was the ability to touch any building in the current field of view and ISMAPfeature of web browsers, jump to a facade of that building. Selected building contained additional data: eg, interior shots, historical images, menus of restaurants, video interviews of city officials, etc., allowing the user to take a virtual tour through those buildings.

The facades of buildings were texture-mapped onto 3D models. The same 3D model has been used to translate 2D screen coordinates into additional databases.

In a later implementation, the metadata , which was in large part of the animation database, was encoded as a digital signal in the analog video. The data encoded in each frame is necessary to enable a full-featured surrogate-travel experience.

Another feature of the system was a navigation map that was overlaid above the horizon in the top of the frame; the map used to indicate the user’s current position in the city and the city of the city, which allowed for an alternative way of travel through the city . Additional features of the map interface with the ability to jump back and forth between correlated aerial photographic and cartoon renderings with roads and landmarks highlighted; and to zoom in and out at the Charles Eames ‘ Powers of Ten movie.

Aspen was filmed in early fall and winter. The user Was ble to in situ changes seasons on demand while moving down the street looking at a gold facade. A three-dimensional polygonal model of the city was also generated, using the Quick and Dirty Animation System ( QADAS ), which featured three-dimensional texture-mapping of the facades of landmark buildings, using an algorithm designed by Paul Heckbert . These computer-graphic images, also stored on the laserdisc, were also correlated to the video, enabling the user to view an abstract rendering of the city in real time.


MIT undergraduate Peter Clay , with help from Bob Mohl and Michael Naimark , filmed the hallways of MIT with a camera mounted on a cart. The film was sent to a laserdisc as part of a collection of projects being done at the Architecture Machine Group (ArcMac).

The Aspen Movie Map was filmed in the fall of 1978, in winter 1979 and briefly again (with an active gyro stabilizer) in the fall of 1979. The first version was operational in early spring of 1979.

Many people were involved in the production, most notably: Nicholas Negroponte , founder and director of the Architecture Machine Group, who found support for the project from the Cybernetics Technology Office of DARPA; Andrew Lippman, principal investigator; Bob Mohl, who designed the map overlay system and ran user studies of the efficacy of the system for his PhD thesis; Richard Leacock (Ricky), who headed the MIT Film / Video section and shot along with MS student Marek Zalewski the Cinema Truth interviews placed behind the facades of key buildings; John Borden , of Peace River Films in Cambridge, Massachusetts, who designed the stabilization rig; Kristina Hooper Woolsey of UCSC; Rebecca Allen; Scott Fisher , who matched the photos of Aspen in the silver-mining days from the historical society to the same scenes in Aspen in 1978 and who experimented with anamorphic imaging of the city (using a Volpe lens ); Walter Bender , who designed and built the interface, the client / server model, and the animation system; Steve Gregory ; Stan Sasaki , who built much of the electronics; Steve Yelick , who worked on the laserdisc interface and anamorphic rendering; Eric “Smokehouse” Brown , who built the metadata encoder / decoder; Paul Heckbert worked on the animation system; Mark Shirley andPaul Trevithick , who also worked on the animation; Ken Carson ; Howard Eglowstein ; and Michael Naimark , who was at the Center for Advanced Visual Studies and was responsible for cinematography design and production.

Purpose and applications

ARPA funding during the late 1970s was the subject of the military application of the Mansfield Amendment by Mike Mansfield (who had severely limited funding for hypertext researchers like Douglas Engelbart ).

The Aspen Movie Map’s military application was made to solve the problem of quickly familiarizing soldiers with new territory. The Department of Defense had been deeply impressed by the operation of Entebbe in 1976, where the Israeli commandos had quickly built a crude replica of the airport and practiced it before attacking the real thing. DOD hoped that the Movie Map would have a virtual reality of virtual reality .

While the movie has been referred to as an example of interactive video , it is perhaps more accurate to describe it as a pioneering example of interactive computing . Video, audio, still images and metadata were retrieved from a database and assembled by the computer (an Interdata minicomputer running the MagicSix operating system) redirecting its actions based on user input; video was the main, but not only affordance of the interaction.

See also

  • Google Street View
  • Everyscape
  • Eye2eye Software
  • Mapillary – Crowdsourced Street Level Photos

Further reading

  • Video The Interactive Movie Map: A Surrogate Travel System , January 1981, The Architecture Machine, at the MIT MediaLab Speech Interface Group; Youtube copy .
  • Bender, Walter, Computer animation via optical video disc , Thesis Arch 1980 MSVS, Massachusetts Institute of Technology.
  • Brand, Stewart, The Media Lab, Inventing the Future at MIT (New York: Penguin Books, 1989), 141.
  • Brown, Eric, Digital data bases on optical videodiscs , Thesis EE 1981 BS, Massachusetts Institute of Technology.
  • Clay, Peter, Surrogate travel via optical videodisc , Thesis Urb.Stud 1978 BS, Massachusetts Institute of Technology.
  • Heckbert, Paul, ” Survey of Texture Mapping ,” IEEE Computer Graphics and Applications , Nov. 1986, pp. 56-67.
  • Lippman, Andrew, “Movie-maps: An application of the optical videodisc to computer graphics,” Proceedings of the 7th annual conference on computer graphics and interactive techniques , Seattle, Washington, United States, 1980, pp. 32-42.
  • Mohl, Robert, Cognitive space in the interactive movie map: an investigation of spatial learning in virtual environments , Thesis Arch 1982 Ph.D., Massachusetts Institute of Technology.
  • Naimark, Michael, ” Aspen the Verb: Musings on Heritage and Virtuality ,” Presence: Teleoperators and Virtual Environments, MIT Press Journals, Vol. 15, No. 3, June 2006.
  • Yelick, Steven, Anamorphic image processing , 1980 Thesis EE, Massachusetts Institute of Technology.

Leave a Reply

Your email address will not be published. Required fields are marked *

Copyright 2019
Shale theme by Siteturner